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Abstract We study global existence and long time behaviour for the inhomogeneous non-
linear BGK model for the Boltzmann equation with an external confining potential. For an
initial datum f0 ≥ 0 with bounded mass, entropy and total energy we prove existence and
strong convergence in L1 to a Maxwellian equilibrium state, by compactness arguments and
multipliers techniques. Of particular interest is the case with an isotropic harmonic potential,
in which Boltzmann himself found infinitely many time-periodic Maxwellian steady states.
This behaviour is shared with the Boltzmann equation and other kinetic models. For all these
systems we study the multistability of the time-periodic Maxwellians and provide necessary
conditions on f0 to identify the equilibrium state, both in L1 and in Lyapunov sense. Under
further assumptions on f , these conditions become also sufficient for the identification of
the equilibrium in L1.

Keywords BGK model · Boltzmann equation · External force · Long time behaviour ·
Maxwellian steady states

1 Introduction

We consider the BGK Boltzmann equation [2]:

∂tf + v · ∇xf − ∇xΦ · ∇vf = M[f ] − f (1.1)

with (t, x, v) ∈ (0,+∞) × R
N × R

N , where the local Maxwellian M[f ]

M[f ](t, x, v) = ρ(t, x)

(2πT (t, x))N/2
exp

(
−|v − u(t, x)|2

2T (t, x)

)
(1.2)
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is defined in terms of the velocity moments of f through the spatial density ρ, the mean
velocity u and the temperature T

⎛
⎝ ρ

ρu

ρ|u|2 + ρT N

⎞
⎠ (t, x) =

∫
RN

⎛
⎝ 1

v

|v|2

⎞
⎠f (t, x, v)dv.

This kinetic model describes the time evolution of a system with a large number of particles
in a dilute gas. The left hand side is the transport operator with force field −∇xΦ , while
the right hand side describes the interactions between particles. The unknown f (t, x, v) ≥ 0
represents the probability density of particles that, at time t , are at position x with velocity v.
The external potential Φ = Φ(x) satisfies the assumptions

Φ(x) ≥ 0,Φ ∈ C2(RN), exp(−Φ(x)) ∈ L1(RN), (1.3)

|x||∇Φ(x)| ≤ c1(1 + Φ(x)), |∇Φ(x)|(1 + |v|σ ) ≤ c2(1 + |v|2 + 2Φ(x)), (1.4)

for some σ ∈ (0,1] and c1, c2 ∈ (0,+∞).
And, ∃R∗ > 0 such that ∀R ≥ R∗ the energy level set

ΓR = {(x, v) ∈ R
2N : |v|2 + 2Φ(x) = R} is a regular C2-submanifold of R

2N−1. (1.5)

The hypothesis (1.3) assures the existence of the Hamiltonian flow associated to the trans-
port of (1.1) as well as the presence of non trivial steady states with finite mass and energy,
therefore Φ is said to confine the particles. In (1.4)–(1.5) there are technical assumptions
concerning the growth of Φ at infinity (which for example can be polynomial of any arbi-
trarily order). The BGK is a model for the Boltzmann equation having a simplified collision
term which preserves the qualitative properties of the true collision operator: conservation of
mass and total energy, H-theorem and the Euler and Navier-Stokes hydrodynamic limits (see
[29, 30], in absence of potential). For this reason the model (1.1), with constant relaxation
time, and its variants result useful for physical considerations (cf. [8]). Recent extensions of
the original BGK model have been proposed in [1, 6] and [9]. BGK models find also appli-
cation in other mathematical fields, such as the kinetic formulation of conservation laws (cf.
[3, 26]) and the construction of numerical schemes ([4, 27]).

We consider the Cauchy problem of (1.1) with initial datum

f (t = 0, x, v) = f0(x, v) ≥ 0 a.e. in R
2N, (1.6)

having bounded mass, energy and entropy:
∫

R2N

f0(1 + 2Φ(x) + |v|2 + | logf0|)dxdv = c0 < +∞. (1.7)

The interest in the model (1.1) consists in the study of the long time behaviour of the system.
Indeed, the introduction of a confining potential Φ has the scope of keeping the gas trapped
even as the time goes to infinity. For a general potential Φ obeying the conditions above, the
Maxwellian equilibrium state is ms(x, v) = α exp(−|v|2/(2θ) − Φ(x)/θ) ∈ L1(R2N), with
α, θ > 0. However there are cases (e.g. Φ(x) = |x|2/2) in which the system admits infinitely
many time-dependent Maxwellian equilibria. They have been computed by Boltzmann for
the Boltzmann equation (under quadratic potential) and are reported in several books of
statistical physics. Here a first question is if the system is stable with respect to them and
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in which sense. Then it is natural to ask if the system relaxes towards one of them. Finally
one would like to identify the limit only using information on the initial datum f0 and the
conserved quantities.

The first aim of this paper is to analyze the existence and the long time behaviour of
the solutions under the influence of an external confining potential satisfying (1.3)–(1.5).
Global L1-existence in R

N for the BGK equation without potential has been investigated in
[25] and [24], while [28] dealt with bounded domains. We follow the work of Perthame [25],
(used also in other cases, see [6, 30]). We analyze in particular the effect of our Hamiltonian
transport in the estimates and their time dependence, since this is very important for the long
time limit.

The H-Theorem then shows that the states with constant logarithmic entropy (the steady
states) are local Maxwellians. By passing to the limit t → +∞, we verify that the final
effect is a relaxation towards a Maxwellian distribution. This has been proved in the case
of bounded domains with so-called thermalizing boundary conditions (cf. [10]) and in the
case of a linear relaxation model (cf. [7]). Applying the compactness method of the exis-
tence part, we get L1-strong convergence of the time translated sequence f (t + tn, x, v) to
a Maxwellian steady state m(t, x, v), with the same mass as f0 and bounded energy and en-
tropy (Theorem 4). This result is unconditioned and can also be used to remove the a-priori
assumption used in [10].

In Sect. 5, in dependence on the potential, we discuss the regular Maxwellian steady
state solutions for the equation, the so-called global Maxwellians. Of particular interest is
the above-mentioned quadratic case Φ(x) = ∑

ajx
2
j + b · x, in which Boltzmann found

infinite time-dependent Maxwellian solutions. This behaviour is peculiar to the whole-space
problem and it is shared with a full class of kinetic equations

∂tf + v · ∇xf − ∇xΦ · ∇vf = C(f ) (1.8)

with C(f ) a collision operator of Boltzmann-type described in (5.1) (since all models have
the same steady states). We focus our attention on the isotropic harmonic potential |x|2/2,
where the solutions are time periodic. The anisotropic case results easier than the previous
one, and we only mention it. The computations for the isotropic potential are reported in
[8]—Chap. III, where it is said: “the above result, . . . , shows that equilibrium is not nec-
essarily achieved in an harmonic field”. Also the problem of the stability of this set has
remained open.

The second aim of our work is then to provide some answers for the harmonic field:
for the class of kinetic equations (1.8) we determine the multistability for the global
Maxwellians in L1 and in Lyapunov sense (Lemma 3). For the BGK model, as already
mentioned, we can say more since we prove convergence to equilibrium in L1. The com-
pactness method of Sect. 4 is anyway unable to uniquely identify the limit m. Hence, in
Sect. 5 we investigate the Maxwellian steady states of (1.8). Our first step is the study of the
evolution of some moments of order 1 and 2 of f (t), which result time-periodic. They let
us identify a unique Maxwellian m∞(t), for which we give a characterization of the basin
of attraction (both in L1 and in Lyaponov sense). This equilibrium state depends on f0 and
minimizes the relative entropy H [f (t),m(t)], among all the Maxwellian solutions m with
the same mass as f0 (Proposition 1). On the other hand, the stationary (in sense of time-
independent) equilibrium state ms minimizes the entropy H [m(t)]. We then compare the
properties of m∞(t) and ms . In Sect. 6, under some assumptions on f , we finally show that
the necessary conditions are also sufficient to prove that f (t + tn) → m∞(t) in L1, for the
BGK. In the Appendix we collect some computations for the harmonic potential and some
details of the existence theorem.
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2 Existence

We introduce the main existence theorem for the BGK Boltzmann equation.

Theorem 1 Let (1.1)–(1.7) define the Cauchy problem for the BGK Boltzmann equa-
tion. Then, there exists a nonnegative mild solution f , with (1 + 2Φ(x) + |v|2)f ∈
C([0,+∞);L1(R2N)) and such that∫

R2N

(1 + Φ(x) + |v|2 + | logf |)f dxdv ≤ c(t0) < +∞, ∀t ≤ t0. (2.1)

Moreover, f satisfies the global conservation of mass and total energy, and (ρ,u,T ) solve
in distributional sense the following “hydrodynamical system”

∂tρ + ∇x · (ρu) = 0,

∂t (ρu) + ∇x ·
(∫

f v ⊗ vdv
)

+ ρ∇xΦ = 0, (2.2)

∂t (ρ|u|2 + NρT ) + ∇x ·
(∫

f v|v|2dv
)

+ 2∇xΦ · (ρu) = 0

where the last equation is valid only for potentials with σ = 1 in (1.4).
If Φ = Φ(|x|) is a radial potential and

∫
R2N f0|x|2dxdv < ∞ holds, then f satisfies

the conservation of the angular momentum components
∫

R2N f (xjvk − xkvj )dxdv, for each
j, k = 1, . . . ,N .

The proof of Theorem 1 is included in Appendix 7.2, and here we only show the main
points of it.

Before proving this result, we recall some facts about the transport equation:

(∂t + v · ∇x − ∇xΦ · ∇v)f = g − f, f (t = 0) = f0 (2.3)

with g ∈ L∞
loc([0,+∞);L1(R2N)). Under the hypothesis on Φ , the Hamiltonian system

{
d
ds

X(s; t, x, v) = V (s; t, x, v), X(t; t, x, v) = x,

d
ds

V (s; t, x, v) = −∇XΦ(X(s; t, x, v)), V (t; t, x, v) = v

defines a unique classical flow (X(s), V (s)), which preserves the measure due to the con-
servation of energy |V (s; t, x, v)|2 + 2Φ(X(s; t, x, v)) = |v|2 + 2Φ(x),∀s < ∞, and the
Jacobian J (s; t, x, v) of the map (x, v) �→ (X(s; t, x, v),V (s; t, x, v)) is identically one.
Therefore, the unique solution f ∈ C([0,+∞);L1(R2N)) of (2.3) is given by

f (t, x, v) = e−t f0(X(0; t, x, v),V (0; t, x, v))

+
∫ t

0
es−t g(s,X(s; t, x, v),V (s; t, x, v))ds, (2.4)

or equivalently, for t2 ≥ t1 ≥ 0,

f #(t2, x, v) = et1−t2f #(t1, x, v) +
∫ t2

t1

es−t2g#(s, x, v)ds, (2.5)

where the notation h#(s, x, v) = h(s,X(s; t, x, v),V (s; t, x, v)) denotes the restriction to
the characteristics.
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2.1 Moment Estimates and Velocity Averaging

In this section we collect the two main technical results of the existence proof. The first result
concerns the boundedness of the v-moment of order (2 + σ) of f in bounded x-domains
and in terms of lower moments. This estimate will be also necessary in Sect. 4.

Lemma 1 Let f ∈ C([0,+∞);L1(R2N)) solve (2.3) with f0 ≥ 0, g ≥ 0 a.e. such that
∫

R2N

(1 + |v|2 + Φ(x))
(
f0(x, v) + g(t, x, v)

)
dxdv ≤ b0 < +∞

∀t ∈ [t1, t2] ⊂ [0,+∞), where Φ satisfies (1.3)–(1.5) and b0 = b0(t2, t1) is a constant. Then,
for any bounded subset Kx of R

N
x it holds

∫ t2

t1

∫
Kx×RN

|v|2+σ f dxdvdt ≤ b1, (2.6)

with σ given in (1.4) and b1 = b1(b0, t1, t2,diam(Kx)) a finite constant.

Proof Under the hypothesis, (2.3) has the nonnegative solution (2.4) that satisfies the same
estimates as g. We multiply (2.3) by the C1-function

ϕ(x, v) = (1 + |v|2)σ/2 (x − x0) · v
(1 + |x − x0|2)1/2

, with x0 ∈ Kx a fixed point,

and we integrate by parts over (t1, t2) × R
N
x × R

N
v (cf. [23], [17]):

∫ t2

t1

∫
R2N

f
|v|2(1 + |v|2)σ/2

(1 + |x − x0|2)1/2

(
1 − (v · (x − x0))

2

(1 + |x − x0|2)|v|2
)

dxdvdt

=
∫

R2N

(1 + |v|2)σ/2 v · (x − x0)

(1 + |x − x0|2)1/2
(f (t2) − f (t1)) dxdv

−
∫ t2

t1

∫
R2N

(1 + |v|2)σ/2 v · (x − x0)

(1 + |x − x0|2)1/2
(g − f )dxdvdt

+
∫ t2

t1

∫
R2N

f
(1 + |v|2)σ/2∇xΦ

(1 + |x − x0|2)1/2
·
(

σv
(x − x0) · v

1 + |v|2 + (x − x0)

)
dxdvdt

=: I1 + I2 + I3.

The left hand side can be bounded from the bottom by

∫ t2

t1

∫
R2N

|v|2(1 + |v|2)σ/2

(1 + |x − x0|2) 3
2

f dxdvdt

≥ 1

(1 + diam(Kx)2)
3
2

∫ t2

t1

∫
Kx×RN

|v|2+σ f dxdvdt.

We conclude by estimating from above the three integrals at the right hand side

|I1| ≤
∫

R2N

(1 + |v|2)σ/2|v||x − x0|
(1 + |x − x0|2)1/2

(f (t1) + f (t2)) dxdv
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≤ c

∫
R2N

(1 + |v|2) (f (t1) + f (t2)) dxdv ≤ c1(b0, t2, t1)

since σ ≤ 1. Analogously, we get |I2| ≤ c2(b0, t2, t1). Finally, by (1.4),

|I3| ≤ c

∫ t2

t1

∫
R2N

|∇xΦ|(1 + |v|σ )f dxdvdt

≤ c

∫ t2

t1

∫
R2N

(1 + 2Φ(x) + |v|2)f dxdvdt ≤ c3(b0, t2, t1).

The previous computations can be justified after a regularization of the solution f . �

The second result is a L1-velocity averaging lemma for Hamiltonian systems, that
slightly extends Proposition 3 of [18] (see also [15]). The same result holds in case Rt

is replaced by a time interval (t1, t2).

Lemma 2 Let K ⊂ L1(Rt × R
N
x × R

N
v ) be a bounded and uniformly integrable set and let

S be the corresponding set of solutions F of the following transport equation

(1 + ∂t + v · ∇x − ∇xΦ · ∇v)F = G,

with G ∈ K and Φ = Φ(x) a given potential satisfying (1.3). Then, for each ψ ∈ W 1,∞(RN)

with compact support, the set of velocity averages {∫
RN F (t, x, v)ψ(v)dv : F ∈ S} is com-

pact in L1
loc(Rt × R

N
x ).

Proof We first apply a localization argument by defining the family {f = ξF : F ∈ S}
in terms of the function ξ ∈ C∞

0 (R × R
N × R

N), with ξ ≡ 1 on P × suppψ , where
ψ ∈ W 1,∞(RN

v ) is a fixed test function with compact support and P ⊂ Rt × R
N
x . Hence,

f solves the linear equation:

D(f ) = h, D := (1 + ∂t + v · ∇x − ∇xΦ · ∇v),

with h := D(ξF) = D(ξ)F + ξG (2.7)

and both the families {f : F ∈ S} and {h : F ∈ S,G ∈ K} have (the same) compact sup-
port and are uniformly integrable in L1(R × R

2N). One can write the unique solution f in
terms of the Hamiltonian flux X(s),V (s) as: f (t, x, v) = ∫ ∞

0 e−sh(t − s,X(t − s; t),V (t −
s; t))ds(:= R(h)), where we call R = D−1 the resolvent of the equation. It holds (uniformly
in K):

‖f ‖L1(R×R2N ) = ‖R(h)‖L1(R×R2N ) ≤ ‖h‖L1(R×R2N ) ≤ c(|suppξ |). (2.8)

We denote by aψ = ∫
RN f (t, x, v)ψ(v)dv the velocity moment. For a fixed b > 0, we

perform the decomposition f = f >
b + f <

b and aψ = a>
ψb + a<

ψb , for the families of solu-
tions and moments, respectively (1{} is the indicator function): f >

b = R(h1{|h|>b}), f <
b =

R(h1{|h|≤b}), a>
ψb(t, x) = ∫

RN f >
b (t, x, v)ψ(v)dv, a<

ψb(t, x) = ∫
RN f <

b (t, x, v)ψ(v)dv.

From the boundedness and uniform integrability of the set {h : F ∈ S, G ∈ K} and from
(2.8), one obtains for each ψ as b → +∞, uniformly in K:

‖a>
ψb‖L1(R×RN ) ≤ ‖ψ‖L∞(suppψ)‖h1{|h|>b}‖L1(R×R2N ) → 0. (2.9)
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Then, we define g1 = h1{|h|≤b} − f <
b , g2 = ∇xΦf <

b and rewrite the transport equation (2.7)
satisfied by f <

b in the form

(∂t + v · ∇x)f
<
b = g1 + divv(g2),

where by construction and from (2.8), the terms f <
b , g1, g2 are bounded in L2(R × R

2N),
uniformly in K. The L2-averaging lemma (cf. Theorem 5 in [13]) implies that a<

ψb ∈
H 1/4(R × R

N), with uniform bound. Consequently the family {a<
ψb : F ∈ S} belongs to

a compact set of L1(P ). Combining this with relation (2.9), one finally derives the rela-
tively compactness in L1(P ) for {aψ : F ∈ S}, that is for the (truncated) velocity moments
{1{(t,x)∈P }

∫
F(t, x, v)ψ(v)dv} of F . �

Remark 1 We observe that conditions (1.3)–(1.5) are satisfied by potentials with polynomial
growth, i.e. Φ(x) = |x|r for |x| > R∗ and r > 0, r ∈ R. In particular, an application of
the Young’s inequality ab ≤ ap/p + bq/q leads to the second condition in (1.4) with σ =
min(1,2/r) (σ = 1 for quadratic or subquadratic potentials). Bounded perturbations in this
class or lower order potentials are also admissible.

2.2 Further Estimates

Here we show other estimates for the solutions of Theorem 1.

Theorem 2 Under the setting of Theorem 1, we consider f0 fulfilling the two additional
conditions (2Φ(x) + |v|2)2f0 ∈ L1(R2N) and f0(x, v) ≥ g(2Φ(x) + |v|2) a.e., for some
function g(s) > 0.

Then, ρ(t, x) > 0, T (t, x) > 0 a.e., and for all t > 0
∫

R2N

(2Φ(x) + |v|2)2f (t)dxdv ≤ e2t/N

∫
R2N

(2Φ(x) + |v|2)2f0dxdv.

Consequently, the hydrodynamic system (2.2) is satisfied by the velocity moments of f for
every potential Φ satisfying conditions (1.3)–(1.4).

More generally, for a > 1 and (2Φ(x) + |v|2)af0 ∈ L1(R2N), there is c1 > 0 s.t.
∫

R2N

(2Φ(x) + |v|2)af (t)dxdv ≤ ec1t

∫
R2N

(2Φ(x) + |v|2)af0dxdv.

Proof The estimate on the fourth moment comes from the inequality

d

dt

∫
R2N

(2Φ(x) + |v|2)2f dxdv =
∫

R2N

(2Φ(x) + |v|2)2
(
M[f ] − f

)
dxdv

=
∫

R2N

|v|4M[f ]dxdv −
∫

R2N

|v|4f dxdv

≤ 2

N

∫
R2N

(2Φ(x) + |v|2)2f dxdv.

and Gronwall’s lemma. Indeed we get, using spherical coordinates and Jensen’s inequality
∫

R2N

|v|4M[f ]dxdv =
∫

RN

ρ
(
N2T 2 + 2NT 2 + |u|4 + 2N |u|2T + 4T |u|2)dx
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=
∫

RN

ρ(NT + |u|2)2 + 2

N
ρ[(NT + |u|2)2 − |u|4]dx

=
(

1 + 2

N

)∫
RN

ρ
(∫

RN

|v|2 f

ρ
dv

)2
dx − 2

N

∫
RN

ρ|u|4dx

≤
(

1 + 2

N

)∫
R2N

|v|4f dvdx − 2

N

∫
R2N

|u|4f dvdx,

which substituted above proves the result. Note that here and above we have used that
ρ(t) > 0 and that T (t) > 0, for t > 0. This follows from the assumption on f0 and the
mild formulation

f #(t) = e−t f0 +
∫ t

0
es−tM[f ]#(s)ds ≥ e−t g(2Φ(x) + |v|2) > 0 ∀(t, x, v),

and using that g(2Φ(x) + |v|2) = g#(2Φ(x) + |v|2). The bound of the 4th moment can now
be used to control all terms in (2.2) (see proof of Theorem 1). For the case a > 1 see also
[24]—(A.16). �

3 H-Theorem and Stability

The stability properties for the BGK system can be analyzed in terms of the logarithmic
entropy introduced in the proof of the existence. Given two functions f,g ∈ L1(R2N) we
denote by H [f ] = ∫

R2N f logf dxdv the entropy of f and by

H [f,g] =
∫

R2N

f log
f

g
dxdv

the relative entropy of f with respect to g, where ‖f ‖L1 = ‖g‖L1 . This last Lyapunov func-
tional is known to be non negative and vanishes only when f = g a.e. We also recall the
Csiszár-Kullback’s inequality

‖f − g‖2
L1(R2N )

≤ 2‖f ‖L1(R2N )H [f,g] with ‖f ‖L1 = ‖g‖L1 . (3.1)

The main properties of the entropy and the definition of steady state are treated in the so-
called H-Theorem.

Theorem 3 (H-Theorem) For a solution f of Theorem 1 holds the equality

∂t (f logf ) + v · ∇x(f logf ) − ∇xΦ · ∇v(f logf ) = (M[f ] − f )(1 + logf ) (3.2)

in distributional sense. For any t2 > t1 ≥ 0, one obtains

H [f (t1)] − H [f (t2)] =
∫ t2

t1

∫
R2N

(f − M[f ])(logf − logM[f ])dvdxds (3.3)

=
∫ t2

t1

∫
R2N

(f − M[f ]) logf dvdxds ≥ 0 (3.4)
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with equality if and only if f (t) = M[f ](t) a.e. in R
2N , ∀t ∈ [t1, t2]. In this last case we say

that the solution f is a steady state for (1.1). Further, there exists a constant d0 independent
of time such that

d0 ≥ H [f0] − H [f (t)] ≥
∫ t

0
H [f (s),M[f ](s)]ds. (3.5)

The H-Theorem and (3.1) imply the Lyapunov stability and the L1-norm stability for the
regular steady states (see Lemma 3 for a general proof).

Corollary 1 For a solution f (t) and a steady state m(t) of (1.1), such that ‖m(0)‖L1 =
‖f0‖L1 , m ∈ C1([0,+∞) × R

2N) and | logm(t, x, v)| ≤ c(1 + 2Φ(x) + |v|2) (c ∈ R), it
holds

H [f0,m(0)] − H [f (t),m(t)] = H [f0] − H [f (t)] ≥ 0,

‖f (t) − m(t)‖2
L1 ≤ 2‖f0‖L1(R2N )H [f (0),m(0)], t ≥ 0.

(3.6)

4 Convergence to Equilibrium

In this section we study the long time behaviour of (1.1)–(1.7). By a compactness argument
we show that the sequence f (t + tn, x, v) converges strongly in C([0, τ ];L1(R2N)) to a
Maxwellian m(t, x, v). This method, due to L. Arkeryd, has been widely used in the litera-
ture of kinetic models [5, 10, 14, 16, 20–22]. We proceed as in the work [10] concerning the
BGK equation with reverse or specular reflecting boundary conditions, but here we remove
the additional assumption on the solution

sup
t∈[0,∞[

∫
x∈�

∫
v∈RN

f (t, x, v)|v|3 dxdv < +∞,

since Lemma 1 gives the expected control for the higher moments.

Theorem 4 Let f be a solution of the BGK system (1.1)–(1.7) in the sense of Theorem 1.
Then, for every sequence tn going to infinity, there exists an increasing subsequence tnk

and a time dependent local Maxwellian m(t, x, v) such that fnk
(t, x, v) = f (tnk

+ t, x, v)

converges strongly in C([0, τ ];L1(R2N)) to m(t, x, v), for every 0 < τ < +∞. Further,
m(t, x, v) ∈ C([0,+∞);L1(R2N)) is a nonnegative mild solution of the equation

∂tm + v · ∇xm − ∇xΦ · ∇vm = 0 (4.1)

with initial datum m(0, x, v) = limnk→∞ f (tnk
, x, v) (in L1(R2N)). m(t) has the same mass

as f0 and satisfies∫
R2N

(|v|2 + 2Φ(x))m(t, x, v)dxdv ≤
∫

R2N

(|v|2 + 2Φ(x))f0(x, v)dxdv, (4.2)

H [m(t)] ≤ lim
tnk

→∞H [fnk
(t)] = lim

tnk
→∞H [M[fnk

](t)] for a.e. t. (4.3)

For radial potentials Φ = Φ(|x|) with more than quadratic growth (i.e. |x|2+β ≤ c(1 +
Φ(x)), with β > 0 and |x| > R), m has componentwise the same angular momentum as f0.

Proof We divide the proof into three steps.
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Step 1: Weak convergence in L1. For tn → +∞, up to an increasing subsequence tnk
, we

get fnk
⇀ m weakly in L1([0, τ ] × R

2N). This follows from the uniform estimate provided
by the conservation laws and the H-Theorem:

sup
t∈[0,+∞)

∫
R2N

f (t)(1 + 2Φ(x) + |v|2 + | logf (t)|) < +∞. (4.4)

On the other hand, due to the conservation laws, an application of Lemma 1 to (1.1) yields
b1 = (t2 − t1)b2 in the estimate (2.6), with b2 = b2(b0,diam(Kx)) a constant independent of
time. This gives

∫ τ

0

∫
Kx

∫
RN

|v|2+σ fnk
dxdvdt =

∫ tnk
+τ

tnk

∫
Kx

∫
RN

|v|2+σ f dxdvdt ≤ τb2

uniformly in nk . Therefore, as in the proof of Theorem 1, we deduce that M[fnk
] → M[m]

strongly in L1([0, τ ] × R
2N). Moreover, all the properties in (7.7) hold by replacing (fε, f )

with (fnk
,m). It remains to show that m is a Maxwellian. As in [10], the (3.3)–(3.5) imply

for k → ∞
∫ τ

0

∫
R2N

(
M[fnk

] − fnk

) (
logM[fnk

] − logfnk

)
dxdvdt → 0. (4.5)

Positivity and convexity of the function F(x, y) = (x − y)(logx − logy) finally imply
M[m] = m a.e.

Step 2: Strong convergence. Using Jensen’s inequality in the time variable, Csiszár-
Kullback’s inequality (3.1) and the H-Theorem we obtain

1

2τ‖f0‖L1
‖fnk

− M[fnk
]‖2

L1([0,τ ]×R2N )

≤ 1

2‖f0‖L1

∫ τ

0
‖fnk

− M[fnk
]‖2

L1(R2N )
dt ≤

∫ τ

0
H [fnk

,M[fnk
]]dt

≤
∫ τ

0

∫
R2N

(
M[fnk

] − fnk

) (
logM[fnk

] − logfnk

)
dxdvdt. (4.6)

In this way, (4.5) implies ‖fnk
−M[fnk

]‖L1([0,τ ]×R2N ) → 0 when k → ∞. In the previous step
we have shown that ‖M[fnk

] − m‖L1([0,τ ]×R2N ) → 0 when k → ∞. Therefore fnk
converges

strongly to m in L1([0, τ ] × R
2N). Finally, from the mild formulation

et2f (tnk
+ t2,X(t2),V (t2)) = et1f (tnk

+ t1,X(t1),V (t1))

+
∫ t2

t1

esM[f ](tnk
+ s,X(s),V (s))ds

we can deduce the time-equicontinuity of the sequence {f (tnk
+ t,X(t),V (t))}nk

. This
one also converges to m(t,X(t),V (t)) strongly in L1([0, τ ] × R

2N), which implies its
strong convergence in C([0, τ ];L1(R2N)) from Ascoli-Arzela’s Theorem. As consequence,
fnk

(t, x, v) → m(t, x, v) in C([0, τ ];L1(R2N)).
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Step 3: Properties of m. In Step 1 we have said that (7.7) holds for the sequence (fnk
,m).

Hence, it follows the convergence of the mass and the inequality (4.2) (with equality
in the integration domains Kx × R

N
v ). Convexity arguments, the equality H [f,M[f ]] =

H [f ]−H [M[f ]] and (3.6) lead to (4.3), where lim inf is replaced by a limit since H [fnk
](t)

decreases in nk from the H-Theorem. Finally, for a super-quadratic radial potential, the
estimates (4.4) and the pointwise convergence of fnk

to m yield (xj vk − xkvj )fnk
(t) →

(xj vk − xkvj )m(t) in L1(R2N). �

Remark 2 (a) As in [10], one can derive a “preliminary” speed of convergence for the time
averages, showing how fast f approaches its local Maxwellian:

1

t

∫ 2t

t

‖f − M[f ]‖2
L1(R2N )

ds ≤ c

t
. (4.7)

We can write (4.7) as ‖f (t∗)−M[f (t∗)]‖L1(R2N ) ≤ c/
√

t for some t∗ ∈ [t,2t]. Anyway this
result cannot be used to derive an explicit convergence rate to the equilibrium Maxwellian
m. This might be achieved with other methods (hypocoercivity, entropy estimates). They
require strong regularity and time independent bounds, which have not yet been proved
even for the BGK in the torus.

(b) As in [10, Lemma 2], we can also show that the Maxwellian m of Theorem 4 has un-
bounded support (i.e. m > 0 a.e.). Call ρm the density of m and A ⊂ [0,+∞)×R

N a set with
positive measure where ρm(t, x) > 0. Up to a set K of zero measure, one gets m(t, x, v) =
m0(X(0; t, x, v),V (0; t, x, v)) > 0,∀(t, x, v) ∈ A × R

N − K. Since m is a Maxwellian, we
get m > 0 if and only if ρm > 0. Hence, we look for a ṽ such that m(t, x, ṽ) > 0, because in
this way ρm(t, x) > 0, and consequently m(t, x, v) > 0 for a.e. v ∈ R

N . For any (t, x) with
(t, x, v) ∈ [0,+∞) × R

2N − K we have to find (t∗, x∗, v∗) ∈ A × R
N − K and ṽ such that

X(0; t, x, ṽ) = X(0; t∗, x∗, v∗) V (0; t, x, ṽ) = V (0; t∗, x∗, v∗). (4.8)

This immediately implies m(t, x, ṽ) = m0(X(0; t, x, ṽ),V (0; t, x, ṽ)) = m0(X(0; t∗, x∗, v∗),
V (0; t∗, x∗, v∗)) = m(t∗, x∗, v∗) > 0, since (t∗, x∗, v∗) ∈ A × R

N − K and consequently
ρm(t, x) > 0. Assuming

The external potential is such that the following set has zero measure

Γ = {
(t, x) ∈ R × R

N − K1|∀(t∗, x∗) ∈ A, (4.8) has no solution
}

(4.9)

we can prove that the sets where either (4.8) fails (i.e. Γ ) or where (4.8) holds with
(t∗, x∗, v∗) ∈ K , have zero measure. Hence, (4.9) yields m > 0.

5 Maxwellian Steady States for the Boltzmann and BGK Equations

In this section we deal with the regular steady states solutions for (1.1), called global
Maxwellians, and their connection with the results of the previous section. This is the point
in which the behaviour of the BGK in the whole space with confinement qualitatively differs
from the BGK in a bounded domain ([10]).

The results shown in this section are applicable to a generic kinetic equation

∂tf + v · ∇xf − ∇xΦ · ∇vf = C(f ) f (t = 0) = f0, (5.1)

with C(f ) a collision operator such that:
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1. 1, v, |v|2 are collision invariants:
∫

RN C(f )(1, v, |v|2) dv = 0; which implies conserva-
tion of mass, total energy and, in case Φ = Φ(|x|), of angular momentum. Furthermore
C must preserve the positivity.

2. The H-theorem holds in this form:

H [f ](0) − H [f ](t) =
∫ t

0

∫
R2N

C(f (s))(− logf (s))dxdvds ≥ 0

with equality if and only if C(f ) = 0, and this happens if and only if f = M[f ] is a local
Maxwellian distribution.

Apart from our model (1.1), this class includes the Boltzmann equation with confining po-
tential. For our purposes we shall simply assume that (5.1) has solutions for which the
following considerations make a sense. The results are in particular valid for the constructed
solutions of the BGK equation (1.1). As in Sect. 4, the solutions with constant entropy will
be denoted steady states, while the term stationary is always referred to a generic time inde-
pendent function. According to the H-theorem, at the equilibrium the distribution function
f must be a local Maxwellian steady state

m(t, x, v) = ρm(t, x)
1

(2πTm(t, x))N/2
exp

(−|v − um(t, x)|2
2Tm(t, x)

)
, (5.2)

solving both C(m) = 0 and the linear transport equation

∂tm + v · ∇xm − ∇xΦ · ∇vm = 0. (5.3)

If we restrict ourselves to classical solutions, then the problem has been solved by Boltz-
mann himself (for the Boltzmann equation), who considered the case of a more general time
dependent forcing term F(t, x) = −∇xΦ(x) + x · W(t,m), with W(t,m) a special tensor
dependent of time and of m itself (cf. [8], Chap. III.10, equation (10.16)). In our case of a
time-independent potential, we have W(t,m) = 0 and his result reads as follows:

For a quadratic potential Φ(x) = ∑
i aix

2
i + b · x, (5.3) admits an infinite family of time

dependent Maxwellian solutions.
We postpone to Sect. 5.2 the classification and the discussion of these time dependent

Maxwellians for the harmonic potential. In particular we deal with the isotropic harmonic
case, which has time-periodic solutions. Their presence constitutes a problem for the iden-
tification of the equilibrium state. Anyway we know that, in terms of Theorem 4, they do
not prevent the BGK system (1.1) to converge to a Maxwellian equilibrium state, strongly
in L1(R2N). Further, we can also show that they are Lyapunov- and L1-stable with respect
to the solutions of the BGK and more in general of (5.1) (see Corollary 1 and Lemma 3).

If we consider instead a generic stationary potential Φ , then the only regular Maxwellian
solving (5.3) is the so-called barometric distribution

ms(x, v) = α exp

(
−Φ(x)

θ
− |v|2

2θ

)
, with α, θ ∈ (0,+∞). (5.4)

If Φ has radial symmetry, then the stationary state is

ms(x, v) = α exp

(
−Φ(x)

θ
+

N∑
j,k=1

wjkxjvk − |v|2
2θ

)
, with α, θ ∈ (0,+∞), (5.5)
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where {wjk} is an antisymmetric N × N matrix.
On the other hand, if a stationary potential fulfils a certain condition involving Φ and

the parameters of the Maxwellian m(t, x, v) (cf. [8], Chap. III.10, equation (10.20) stated
in R

3, but valid also in R
N ), then one gets additional time-dependent steady states. This

condition can be reformulated as a system of linear equations involving the derivatives of Φ

of order 3 and 4 (cf. equation (10.21) in [8]). A complete classification of such Φ is missing.
However, according to this computation, a polynomial potential satisfies this condition only
in the quadratic case.

In a bounded domain or with linearized models the situation is completely different.
For the BGK and Boltzmann equations with thermalizing boundary conditions (specular re-
flection, reverse reflection, periodic box) and without external potential, Desvillettes [10]
found only stationary equilibrium states with constant density m(x, v) = r0 exp(−ν|v|2) or
m(x, v) = r0 exp(−ν|v|2 − 2(λ0z × x) · v) for surfaces of revolutions. Moreover, the lin-
ear relaxation-time model in R

2N of [7] with confining potential admits only the classical
stationary state (5.4).

The rest of the section is devoted to the classification of the steady states in terms of their
moments and their entropy, always with the intention of finding conditions on the initial
datum f0 to permit an identification of the equilibrium state to which f (t) converges for
t → ∞.

In the following we shall call G(Φ) the family

G(Φ) = {m:m(t, x, v) > 0 is a local Maxwellian (5.2), solution of (5.3),

such that ‖m‖L1(R2N ) = ‖f0‖L1(R2N ), and with finite total energy}. (5.6)

For general potentials one gets G(Φ) = {ms, with the same mass as f0}. In the case G :=
G(|x|2/2) there are other time dependent elements m(t).

5.1 Stability of the Solutions

We then give a general stability statement, valid for all potentials. The part involving the
m(t) Maxwellians is clearly related to the particular potentials admitting them. As first con-
sequence, we get Lyapunov-stability and L1-norm stability for a solution f of (5.1). Fur-
thermore, if we fix f and let m vary in G(Φ) we can study the relation between the several
relative entropy functionals H [f,m](t). All of them do not increase in time, which means
that the solution f (t) approaches all of them (or better, does not depart from them) during
the time evolution. In the next section we shall see that there is only one candidate for the
equilibrium and that it depends on f0.

Lemma 3 Let f (t) be a solution of (5.1) with initial datum f0.
Then, the following statements hold:

(a) If m ∈ G(Φ) then the following quantities are equal:

d

dt
H [f (t),m(t)] = d

dt
H [f (t),ms] = d

dt
H [f (t)] =

∫
R2N

C(f ) log(f )dxdv ≤ 0.

(5.7)

In particular, ∀m1,m2 ∈ G(Φ), ∀t ≥ 0



310 R. Bosi, M.J. Cáceres

(i) H [m1(t)] = H [m1(0)], H [m1(t),m2(t)] = H [m1(0),m2(0)] and

H [f (t),m1(t)] − H [f (t),m2(t)] = H [f0,m1(0)] − H [f0,m2(0)].
(ii) If H [f0,m1(0)] ≤ H [f0,m2(0)], then this relation holds for every time:

H [f (t),m1(t)] ≤ H [f (t),m2(t)], ∀t ≥ 0.

(b) The family G(Φ) is stable in terms of the L1-norm:

‖f (t) − m(t)‖2
L1 ≤ 2‖f0‖L1H [f (0),m(0)], t > 0, m ∈ G(Φ).

Proof (a) Using the expression of the relative entropy, H [f (t),m(t)] = ∫
R2N f logf dxdv−∫

R2N f logmdxdv, and the H-theorem for (5.1) one gets

d

dt
H [f (t),m(t)] =

∫
R2N

C(f ) logf dxdv − d

dt

∫
R2N

f logmdxdv.

Furthermore d
dt

∫
f logmdxdv = 0, because m solves (5.3) and (for some a, b, c)

∫
R2N

C(f ) logmdxdv =
∫

R2N

C(f )
(
a(t, x) + b(t, x) · v + c(t)|v|2)dvdx = 0,

since (5.1) has (1, v, |v|2) as collisional invariants. This completes the proof of (5.7).
For the BGK equation (1.1) the result has been introduced in Corollary 1 and

we prove it rigorously (see relation (3.6)): from the regularity of m we can choose
η(t, x, v) = log(m)α(t)βR(|v|2 + 2Φ(x)) as test function in (7.8) and note (from the
computations above) that (∂t + v · ∇x − ∇xΦ · ∇v) logm = 0 and (∂t + v · ∇x − ∇xΦ ·
∇v)η = log(m)βR(|v|2 + 2Φ(x))∂tα. When R → +∞, then the r.h.s. of (7.8) becomes∫ +∞

0 α(t)
∫

R2N logm(t)(M[f ] − f )(t)dxdvdt , which is finite by the hypothesis on m and
vanishes since M[f ] and f have the same velocity moments.

(b) The statement is a consequence of (5.7) and the Csiszár-Kullback’s inequality (3.1). �

5.2 Isotropic Harmonic Potential

We now focus our attention on the isotropic harmonic potential Φ(x) = |x|2
2 , with x ∈

R
N , for which the already mentioned case of multi-stability occurs for the kinetic equa-

tion (5.1). We start by introducing the solutions computed by Boltzmann, as reported in
[8]—Chap. III.10 for the three dimensional case, easily extendable to R

N . We write logm

as a polynomial in v

logm = a(t, x) + b(t, x) · v + c(t, x)|v|2, a(t, x), c(t, x) ∈ R, b(t, x) ∈ R
N

and insert it in (5.3) to obtain

c(t) = c0 + c1 cos(2t) + c2 sin(2t),

bj (t, x) = 2(c1 sin(2t) − c2 cos(2t))xj + (c3 cos t + c4 sin t) +
N∑

h=1

wjhxh,

a(t, x) = |x|2(c0 − c1 cos(2t) − c2 sin(2t)) + (I · x)(c3 sin t − c4 cos t) + c5,
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where w = {wij } is an antisymmetric N ×N matrix in Cartesian coordinates, I = (1, . . . ,1)T

is the unit vector of R
N and c0, c1, . . . , c5 ∈ R are integration constants. Taking into account

that logm can be decomposed as follows (cf. (5.2))

a(t, x) + b(t, x) · v + c(t)|v|2 = log(ρm) − |um − v|2
2Tm

− N

2
log (2πTm) ,

we obtain the following expression for the hydrodynamical quantities in (5.2)

Tm(t) = − 1

2c(t)
,

um(t, x) = − 1

2c(t)
b(t, x),

ρm(t, x) = exp

(
a(t, x) + N

2
log

( −π

c(t)

)
− |b(t, x)|2

4c(t)

)
.

For t = 0 we can then write

logm(0, x, v) = (c0 − c1)|x|2 − c4(I · x) + c5 − 2c2(v · x) + c3(I · v)

+
N∑

j,h=1

vjwjhxh + (c0 + c1)|v|2. (5.8)

Sometimes we shall use the upper indexes cm
0 , . . . , cm

5 to distinguish the coefficients related
to m from the ones of another Maxwellian.

We recall that m(t) can be written as the evolution of the initial datum m(0) along the
characteristics:

m(t, x, v) = m(0,X(−t),V (−t)),

with X(t) = x cos(t) + v sin(t),V (t) = −x sin(t) + v cos(t). (5.9)

In the huge family of Maxwellian solutions computed by Boltzmann we are interested only
in the subfamily G . The associated integrability conditions lead to some constraints on the
6 + N(N − 1)/2 coefficients c0, . . . , c5 (for example c0 < 0). These constraints are studied
in the Appendix for a particular subfamily of G and will be employed later.

In the following we introduce some definitions to shorten the notations.

Definition 1 Let f (t, x, v) be a function in L1((1+|x|2 +|v|2)dxdv) and (ρ,u,T )(t, x, v)

be the corresponding density, bulk velocity and temperature, then we define

Ix(t) :=
∫

R2N

f (t, x, v)xdvdx =
∫

RN

ρ(t, x)xdx,

Iv(t) :=
∫

R2N

f (t, x, v)vdvdx =
∫

RN

ρ(t, x)u(t, x)dx,

L(t) :=
∫

R2N

f (t, x, v)(v · x)dvdx =
∫

RN

ρ(t, x)(u(t, x) · x)dx,

Epot(t) := 1

2

∫
R2N

f (t, x, v)|x|2dvdx = 1

2

∫
RN

ρ(t, x)|x|2dx,
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Ekin(t) := 1

2

∫
R2N

f (t, x, v)|v|2dvdx = 1

2

∫
RN

ρ(t, x)(|u(t, x)|2 + NT (t, x))dx,

Kjh(t) :=
∫

R2N

f (t, x, v)(vjxh − vhxj )dvdx ∀j,h = 1, . . . ,N,

D(t) :=
∫

R2N

f (t, x, v)dvdx =
∫

RN

ρ(t, x)dx,

and let Etot(t) := Ekin(t) + Epot(t) be the total energy of f (t) and

Jx(t) :=
N∑

j=1

Ix(t)j =
∫

RN

ρ(t, x)(x · I)dx,

Jv(t) :=
N∑

j=1

Iv(t)j =
∫

RN

ρ(t, x)(u(t, x) · I)dx,

be the sum of the components of the vectors Ix and Iv . Sometimes we will use the subscript f

to distinguish the quantities related to f from the ones associated to another function. Fi-
nally, we recall the notation G := G(|x|2/2), defined in (5.6).

We now use the previous notations to shortly represent a quantity used in the following
sections.

For each m1,m ∈ G , we write
∫

R2N

m1(0) logm(0)dxdv

= 2(cm
0 − cm

1 )Epot,m1(0) − cm
4 Jx,m1(0) + cm

5 Dm1(0)

− 2cm
2 Lm1(0) + cm

3 Jv,m1(0) + 2(cm
0 + cm

1 )Ekin,m1(0)

+
∑

1≤j<h≤N

wm
jhKjh,m1(0). (5.10)

5.3 Oscillation of the Moments

We recall that mass, total energy and angular momentum are conserved by the solutions
of (5.1). The time evolution of the other moments in Definition 1 can be computed explicitly
by solving a system of ODEs, as shown in the following lemma.

Lemma 4 Let f be a solution of (5.1) with Φ(x) = |x|2/2. Then the following relations
hold:

Ix(t) = Ix(0) cos t + Iv(0) sin t,

Iv(t) = Iv(0) cos t − Ix(0) sin t,

L(t) = L(0) cos(2t) + Lt(0)

2
sin(2t), Lt (0) = 2Etot(0) − 4Epot(0),

Epot(t) = Epot(0) +
∫ t

0
L(σ)dσ
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= Epot(0) + L(0)

2
sin(2t) − Lt(0)

4
cos(2t) + Lt(0)

4
,

where Lt = dL(t)/dt . Consequently,

Jx(t) = Jx(0) cos t + Jv(0) sin t, Jv(t) = Jv(0) cos t − Jx(0) sin t.

Proof Remember that
∫ (

x, v, (x · v), |x|2, |v|2)C(f )dxdv = 0. The first two relations fol-
low from a multiplication of (5.1) by x and v respectively, and then from an integration in
R

2N and a double derivation:

d

dt
Ix(t) = Iv(t),

d2

dt2
Ix(t) = −Ix(t).

The last two expressions are obtained in an analogous manner (with multipliers (x · v) and
|x|2), using that Etot(t) = Ekin(t) + Epot(t) = Etot(0):

d

dt
L(t) = 2Ekin(t) − 2Epot(t) = 2Etot(t) − 4Epot(t),

d2

dt2
L(t) = −4

d

dt
Epot(t) = −4L(t). �

As consequence of this lemma, we observe that for an isotropic potential a solution f (t)

of (5.1) has moments of 1st and 2nd order (for example kinetic and potential energy) that
oscillate with the same periodicity as the Maxwellian steady states of Sect. 5.2. And we
recall that a solution f is not in general time-periodic.

Since each Maxwellian m ∈ G is a particular solution of (5.1) with initial datum m(0),
we can apply the previous lemma to m obtaining the evolution of the related moments:

Ix,m(t) = Ix,m(0) cos t + Iv,m(0) sin t,

Iv,m(t) = Iv,m(0) cos t − Ix,m(0) sin t,

Lm(t) = Lm(0) cos(2t) + Lt,m(0)

2
sin(2t),Lt,m(0) = 2Etot,m(0) − 4Epot,m(0),

Epot,m(t) = Epot,m(0) + Lm(0)

2
sin(2t) − Lt,m(0)

4
cos(2t) + Lt,m(0)

4
.

We then compare the evolution of the moments of f and m.
If we consider f0 and m(0) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dm(0) = Df (0),

Jx,m(0) = Jx,f (0),

Jv,m(0) = Jv,f (0),

Lm(t) = Lf (0),

Epot,m(0) = Epot,f (0),

Ekin,m(0) = Ekin,f (0),

Kjh,m(0) = Kjh,f (0) ∀j,h = 1, . . . ,N,

(5.11)

then we get the following consequence.

Definition 2 Let f0 be the initial datum for (5.1). We call m∞(t, x, v) the unique
Maxwellian in G solving (5.11).



314 R. Bosi, M.J. Cáceres

Lemma 5 For every initial datum f0 of (5.1), the system (5.11) identifies a unique
Maxwellian m ∈ G , i.e. m∞.

Furthermore, (5.11) holds for all t > 0:

Dm∞(t) = Df (t), Jx,m∞(t) = Jx,f (t), Jv,m∞(t) = Jv,f (t),

Lm∞(t) = Lf (t), Epot,m∞(t) = Epot,f (t), Ekin,m∞(t) = Ekin,f (t),

Kjh,m∞(t) = Kjh,f (t), ∀j,h.

Proof Equation (5.11) provides 6 + N(N − 1)/2 independent conditions to fix the parame-
ters c0, ..c5,wjh of m ∈ G . Moreover, such conditions and Lemma 4 imply that the above
mentioned moments of f and m∞ coincide for each t ≥ 0. �

We first observe that the Maxwellian m∞ identified by f0 is in general time-dependent.
The case in which m∞ coincides with a stationary Maxwellian ms will be investigated in
Sect. 5.5 and we will see that in such occurrence the moments of f in Definition 1 are
constant in time.

In the previous lemma we let f0 fix and we looked for m fulfilling (5.11).
On the other hand, if m ∈ G is given and we let f0 vary, then we have found the basin of

attraction for m, which is defined as the set of initial data f0 for which a solution of (5.1)
converges to m as time tends to infinity. We are interested both in L1-and relative entropy
convergence. Lemma 5 gives the preliminary information that f and m have for each time
the same moments (of Definition 1).

According to this observation, the basin of attraction of m is the set

B A(m) := {f0 : f0 is initial datum for (5.1) and satisfies (5.11)}. (5.12)

As confirmation of this guess, in the next subsection we show that (5.11) implies:

(i) first, the entropy splitting H [f (t),m(t)] = H [f (t)] − H [m(t)] (see Lemma 6),
(ii) and second, a necessary condition on f0 to have H [f (t),m(t)] → 0 as t → +∞ (see

Proposition 1).

In Sect. 6 we shall show how these necessary conditions become sufficient for the BGK
equation.

5.4 Relative Entropy and Necessary Conditions for Its Convergence

In this section we study the properties of the family G with the help of the entropy and the rel-
ative entropy functionals. We recall that Lyapunov functionals, such as the relative entropy,
have been successfully employed to investigate the asymptotic stability for the Boltzmann
equation in bounded domains (cf. [11]) once the equilibrium state is known and unique.
We do not know any application of this method in case of multistable systems. Our use
of this tool is mainly aimed at identifying the equilibrium state. We propose to compare
the time evolution of the solution f (of (5.1)) with respect to the set of relative entropies
{H [·,m] := ∫

(· log(·/m))dxdv|m ∈ G}, i.e. we study the quantities H [f (t),m(t)]. In this
way in Proposition 1 the knowledge of the initial datum f0 lets us identify the element
m∗ ∈ G for which

H [f (t),m∗(t)] = inf
m∈G

{H [f (t),m(t)]} ∀t ≥ 0. (5.13)
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And we will see that m∗ = m∞, as defined in Definition 2. On the other hand, by fixing m∗,
we get information on the initial datum f0 for which the relative entropy is minimal.

In the following we introduce two preliminary important properties of m∞ related to the
splitting of the relative entropy.

Lemma 6 Let f (t) be a solution of (5.1) with initial datum f0, and m∞ be the unique
Maxwellian in G satisfying the condition (5.11). Then, for all t ≥ 0

H [f (t),m∞(t)] = H [f (t)] − H [m∞(t)]. (5.14)

Moreover, for each m ∈ G , m �= m∞, we have

H [f (t),m∞(t)] + H [m∞(t),m(t)] = H [f (t),m(t)]. (5.15)

Proof The relation (5.14) is due to the fact that, under the assumption (5.11) for m∞,

H [m∞(0)] =
∫

R2N

f0(x, v) logm∞(0, x, v)dxdv (5.16)

which holds for all times, as shown in Lemma 3. To prove (5.16) we write log(m∞(0, x, v))

as in (5.8), for the appropriate constants c0, c1, . . . ,wjh corresponding to m∞. In this way,

H [m∞(0)] = 2(c0 − c1)Epot,m∞(0) − c4Jx,m∞(0) + c5Dm∞(0) − 2c2Lm∞(0)

+ c3Jv,m∞(0) + 2(c0 + c1)Ekin,m∞(0) +
∑

1≤j<h≤N

wjhKjh,m∞(0).

Using (5.11) for m∞(0), we can write

H [m∞(0)] = 2(c0 − c1)Epot,f (0) − c4Jx,f (0) + c5Df (0) − 2c2Lf (0)

+ c3Jv,f (0) + 2(c0 + c1)Ekin,f (0) +
∑

1≤j<h≤N

wjhKjh,f (0),

and therefore we obtain (5.16).
In the following, we prove (5.15) for t = 0. We first use (5.14) to rewrite the left hand

site as

H [f0,m∞(0)] + H [m∞(0),m(0)] = H [f0] −
∫

R2N

m∞(0) logm(0)dxdv.

Then, we use (5.10) for m1 = m∞ and, since m∞(0) satisfies (5.11), we obtain

∫
R2N

m∞(0) logm(0)dxdv

= 2(cm
0 − cm

1 )Epot,f (0) − cm
4 Jx,f (0) + cm

5 Df (0)

− 2cm
2 Lf (0) + cm

3 Jv,f (0) + 2(cm
0 + cm

1 )Ekin,f (0) +
∑

1≤j<h≤N

wm
jhKjh,f (0)

=
∫

R2N

f0 logm(0)dxdv.
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Hence, H [f0] − ∫
R2N m∞(0) logm(0)dxdv = H [f0,m(0)], which coincides with the right

hand side of (5.15) at time t = 0. The same result holds for each time t > 0 using
Lemma 3a. Indeed, one gets H [m∞(0),m(0)] = H [m∞(t),m(t)] and H [f (t),m(t)] −
H [f (t),m∞(t)] = H [f0,m(0)] − H [f0,m∞(0)]. �

Since all states m in G are stable we must impose restrictions on the initial data in order
to expect entropy convergence to a particular solution m∗ in G . It seems natural to consider
an initial condition f0 of (5.1) “closer” to m∗ than to any other m in G . We express this
closeness to m∗ by the following constraint on f0

H [f0,m∗(0)] < H [f0,m(0)], ∀m ∈ G − {m∗} . (5.17)

Due to Lemma 3 this property holds for all times t > 0. This means that if initially the
solution is closer to m∗ than to any other state m, then this continues to hold during the time
evolution.

In the following statement, we notice that (5.17) is a necessary condition for the H -
convergence to m∗. Moreover, the condition (5.17) becomes more explicit, since it is shown
to be equivalent to 6 + N(N − 1)/2 constraints on the moments of m∗(0) and f0.

Proposition 1 Let f0 be an initial datum for (5.1), f be a corresponding solution and
m∗ ∈ G be a Maxwellian satisfying (5.17). Then:

(a) The relation (5.17) is a necessary condition for the Lyapunov convergence of f (t) to
m∗(t); i.e. if limt→+∞ H [f (t),m∗(t)] = 0 then condition (5.17) is satisfied.

(b) For each f0 given, the relation (5.17) holds if and only if m∗(0) fulfils the system (5.11).
This means that m∗ coincides with m∞ of Definition 2.

(c) For each m∗ ∈ G given, the relation (5.17) holds if and only if f0 belongs to the set
B A(m∗) defined in (5.12).

Proof (a) This can be proved by contradiction. Indeed, if we suppose that ∃m ∈ G − {m∗}
with H [f0,m(0)] ≤ H [f0,m∗(0)], then Czisar-Kullback’s inequality (3.1) implies: ‖f (t)−
m∗(t)‖2

L1 ≤ 2‖f0‖L1H [f (t),m∗(t)] and ‖f (t) − m(t)‖2
L1 ≤ 2‖f0‖L1H [f (t),m(t)]. There-

fore, if we assume that H [f (t),m∗(t)] → 0 for t → ∞, this implies H [f (t),m(t)] →
0 for t → ∞. Consequently, f converges in the L1-norm both to m∗ and to m, which gives
a contradiction.

(b) It is a consequence of Lemma 6. We suppose that m∗(0) fulfils the system (5.11),
then, using the cited lemma, we obtain the following relation between the relative entropies

H [f (t),m∗(t)] + H [m∗(t),m(t)] = H [f (t),m(t)] ∀t ≥ 0.

Therefore, the relation (5.17) has been demonstrated, because H [m∗(0),m(0)] > 0 (since
m∗ and m are different functions). To finish the proof we assume that the relation (5.17)
holds and we reason by contradiction: we suppose that m∗(0) does not satisfy the sys-
tem (5.11). This means that there exists another Maxwellian m∞ in G − {m∗} fulfilling
the system (5.11). Applying Lemma 6 to m∞ and m∗:

H [f (t),m∞(t)] + H [m∞(t),m∗(t)] = H [f (t),m∗(t)] ∀t ≥ 0,

we get a contradiction since we find H [f0,m∞(0)] < H [f0,m∗(0)].
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(c) If f0 ∈ B A(m∗), then the relation (5.17) follows from (5.15) with m∞ = m∗. On the
other hand, if (5.17) holds and f0 /∈ B A(m∗), then one could find some m1 ∈ G such that
f0 ∈ B A(m1). Hence, from Lemma 6 one obtains

H [f (t),m1(t)] + H [m1(t),m∗(t)] = H [f (t),m∗(t)] ∀t ≥ 0,

leading to a contradiction. �

5.5 The Stationary Maxwellian Equilibrium

The necessary condition (5.17) for the convergence of f (t) to a Maxwellian steady state (in
relative entropy) identifies a Maxwellian m∞ ∈ G having the same mass, energy and angular
momentum as f0. These are the conserved quantities of (5.1).

In the following lemma we note that there exists another element in G for which the
splitting (5.14) is possible. We introduce its definition.

Definition 3 Let f0 be the initial datum for (5.1). We call

ms(x, v) = exp

(
c0(|x|2 + |v|2) +

∑
h=1..N

wjhxhvj + c5

)
,

(with fixed coefficients) the unique stationary Maxwellian in G having the same mass, energy
and angular momentum as f0.

This Maxwellian ms has lower entropy than m∞, while m∞ is the element minimizing
the relative entropy functional.

Lemma 7 Assume Φ(x) = |x|2/2. Let f0 be the initial datum and f be a solution for (5.1)
and let ms be as in Definition 3, then

H [f (t),ms] = H [f (t)] − H [ms], (5.18)

H [ms] ≤ H [m∞(t)] ≤ H [f (t)], (5.19)

H [f (t),m∞(t)] ≤ H [f (t),ms], (5.20)

where m∞ has been defined in Definition 2.
Moreover, if f0 is such that ms �= m∞, then the inequality (5.20) and the first inequality

in (5.19) are strict.

Proof Concerning the uniqueness of ms , the conservation laws let one fix the free parame-
ters c0,wjh, c5 in ms and determine the stationary equilibrium state of (5.3) uniquely. The
(5.18) follows from

∫
R2N f (t) logmsdxdv = H [ms], since logms is linear combination of

collision invariants, and from the conservation laws. The positivity of the relative entropy
implies both H [f (t)] ≥ H [m∞(t)] and H [f (t)] ≥ H [ms]. But (5.18) holds for all solutions
f (t) having the same mass, energy and angular momentum as f0, hence also for m∞(t). This
implies H [m∞(t)] ≥ H [ms], completing the proof of (5.19). By a difference with H [f (t)]
and from the equalities (5.14) and (5.18), one directly gets (5.20) (which is also a direct
consequence of Proposition 1(b). The strict inequalities are a consequence of two facts: the
relative entropy vanishes if and only if both functions coincide, and for both functions ms
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and m∞(t) the splitting for the relative entropy holds. Therefore if H [ms] = H [m∞(t)], then
H [m∞(t),ms] = 0 and ms = m∞(t). In the other case, if H [f (t),m∞(t)] = H [f (t),ms],
then H [ms] = H [m∞(t)] implying ms = m∞(t). �

To summarize: the splitting (5.18) holds if f0 and ms share the 2+N(N −1)/2 conserved
quantities, while (5.14) is more restrictive since the constraints are 6 + N(N − 1)/2.

We now define the subset of G containing the Maxwellian solutions with the same total
energy and angular momentum as f0:

F = {m ∈ G : Etot,m(0) = Etot,f (0),Kjh,m(0) = Kjh,f (0),∀j,h}. (5.21)

In particular, we get m∞,ms ∈ F and the following properties.

Corollary 2 Under the setting of Lemma 7, we get:

(a) The inequality (5.19) implies

H [ms] ≤ H [m̃(t)], ∀m̃ ∈ F , (5.22)

H [ms] = inf{H [m(t)],∀m ∈ F }. (5.23)

(b) The relation (5.13) holds, since for each a, b ∈ R such that

H [ms] < a < H [m∞(t)], H [m∞(t)] < b < H [f0] (5.24)

there exist ma,mb in G with a = H [ma(t)] and b = H [mb(t)].
(c) If m̃ �= ms and m̃ ∈ F , then H [f (t), m̃(t)] �= H [f (t)] − H [m̃(t)].

Proof (a) The inequality (5.22) is obvious since f = m̃(t) is a particular solution of (5.1).
Equation (5.23) follows from the continuous dependence of H [m(t)] from its parameters
c0, . . . , c5 (see (5.10) for m1 = m). In the Appendix, we made explicit computation for the
family F . The entropy of m̃ ∈ F1 is H [m̃](0) = N(−1 + 1

2 log(
−c0
2π2 )) (cf. (7.2)), which is a

continuous strictly decreasing function in c0 (with c0 ≤ −1/2 and c0 = −1/2 only for ms ).
Its minimum value is H [ms] = −N(1 + log(2π)).

(b) From point (a) we can choose ma,mb in F . In fact, for each h ∈ R such that H [ms] <

h there exists mh in F satifying the equality h = H [mh(t)].
(c) By contradiction, if H [f (t), m̃(t)] = H [f (t)] − H [m̃(t)] for some m̃, then the in-

equality (5.22) could be reversed by exchanging the role of ms and m̃(t), giving as result
H [m̃(t)] − H [ms] = H [m̃(t),ms] = 0, which would imply m̃ = ms . �

Equation (5.23) shows that ms is the state having the lowest entropy in F .
For this reason one could be erroneously led to think that ms is the most probable equi-

librium state for (5.1), while we have shown that m∞ instead is the right candidate for the
relative entropy convergence, and also for the L1-convergence (see Sect. 6).

As implicitly said in Lemma 7, the choice of f0 determines whether or not m∞ and ms

coincide.
In the following, we summarize all the information about the case m∞ = ms .

Corollary 3 Under the setting of Lemma 7, let f0 fulfil the additional assumptions:

Jx,f (0) = 0, Jv,f (0) = 0, Lf (0) = 0,

Epot,f (0) = Ekin,f (0) = Etot,f (0)

2
.

(5.25)
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Then,

(a) The previous moments are conserved for each time t > 0:

Jx,f (t) = 0, Jv,f (t) = 0, Lf (t) = 0,

Epot,f (t) = Ekin,f (t) = Etot,f (0)/2,

i.e. the moments do not oscillate during the evolution. In particular, we get equipartition
between kinetic and potential energy for each time.

(b) m∞(t, x, v) = ms(x, v), which implies H [m∞] = H [ms], H [ms] < H [m],∀m ∈ F −
{ms}, H [f (t),ms] < H [f (t),m],∀m ∈ G − {ms}.

Proof (a) follows from Lemma 4 and (b) is a consequence of Lemma 7 and the definition
of m∞. �

We conclude the section with an alternative proof of Proposition 1(c), which employs the
elements of the family F as ‘test functions’. This result is interesting since it is independent
of the knowledge of Sects. 5.3 and 5.4. The computations used could turn useful in other
cases. We show the case m∗ = ms . Hence (5.17) becomes

H [f0,ms] < H [f0,m(0)], ∀m ∈ G − {ms} . (5.26)

Without restriction of generality we consider the following normalizations

Df (0) = 1 Etot,f (0) = N Kjh,f (0) = 0 ∀j,h = 1, . . . ,N, (5.27)

The same relation holds for f (t) and for the stationary Maxwellian ms , equal to ms =
(2π)−N exp(−(|x|2 + |v|2)/2).

Proposition 2 Let f0 = f0(x, v) ≥ 0 be the initial datum of (5.1) with Φ(x) = |x|2/2, which
satisfies (5.27) and let ρ(t, x), u(t, x) be the density and the mean velocity of a correspond-
ing solution f (t, x, v). Then (5.26) is equivalent to

2Epot,f (0) = N, Lf (0) = 0, Jv,f (0) = 0, Jx,f (0) = 0. (5.28)

Moreover, these conditions hold for all times: ∀t ≥ 0

2Epot,f (t) = N, Lf (t) = 0, Jv,f (t) = 0, Jx,f (t) = 0. (5.29)

Proof

Case t = 0.

Step 1: (5.26) implies (5.28). We rewrite (5.26) as: ∃f0 such that

∀m ∈ G − {ms}
∫

f0 logmsdxdv >

∫
f0 logm(0)dxdv. (5.30)

By (5.27) and since ms ∈ F , the l.h.s. is equal to H [ms]. For the r.h.s. we obtain, using (5.8),
∫

f0 logm(0)dxdv = −2c1

∫
ρ0|x|2dx + c5 + 2N(c0 + c1) − c4

∫
ρ0(I · x)dx
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+
∫

ρ0(−2c2x + c3I) · u0 dx +
N∑

j,h=1

∫
ρ0 u0,jwjhxhdx.

Equation (5.27) implies
∑N

j,h=1 wjh

∫
ρ0 u0,j xhdx = 0. Then (5.30) can be rewritten as

−N(1 + log(2π)) − c5 − 2Nc0 > 2Nc1 − 2c1

∫
ρ0|x|2dx − c4

∫
ρ0(I · x)dx

+
∫

ρ0(−2c2x + c3I) · u0dx. (5.31)

We test first this condition in the subfamily F1 − {ms} of G (see Appendix 7.1) where we
get:

2c1

∫
ρ0|x|2dx > N(1 + log(2π)) + 2N(c0 + c1) + N

2
log

(−c0

2π2

)

and two possible choices for c1: c1 = −
√

c0(c0 + 1
2 ) < 0 and the positive one c̃1 =√

c0(c0 + 1
2 ). Then, we obtain the following constraint: ∀c0 < −1/2,

N + N

2c̃1

(
1 + 2c0 + 1

2
log(−2c0)

)
<

∫
ρ0|x|2dx

< N + N

2c1

(
1 + 2c0 + 1

2
log(−2c0)

)
.

We notice that the first term of the inequality is continuously increasing in c0 while the last
one is continuously decreasing in c0. Therefore, if we take c0 tending to −1/2 we obtain∫

ρ0|x|2dx = N .
In the same way we obtain (see Appendix 7.1 for definitions): In Fa − {ms}:

2N + 4Nc0 + N log(−2c0)

[4c0(2c0 + 1)]1/2
<

∫
ρ0(I · x)dx <

−2N − 4Nc0 − N log(−2c0)

[4c0(2c0 + 1)]1/2

and then
∫

ρ0(I · x)dx = 0. In Fb − {ms}:
2N + 4Nc0 + N log(−2c0)

[4c0(2c0 + 1)]1/2
<

∫
ρ0(I · u0)dx <

−2N − 4Nc0 − N log(−2c0)

[4c0(2c0 + 1)]1/2

and then
∫

ρ0(I · u0)dx = 0. In Fc − {ms}:
2N + 4Nc0 + N log(−2c0)

2[2c0(2c0 + 1)]1/2
<

∫
ρ0(x · u0)dx <

−2N − 4Nc0 − N log(−2c0)

2[2c0(2c0 + 1)]1/2

and then
∫

ρ0(x · u0)dx = 0.

In all the 4 families we used the fact that c0 = −1/2 ⇔ m = ms .

Step 2: Equation (5.28) implies (5.26). Using (5.28) in (5.31) and considering the equiva-
lence ∫

f0 logm(0)dxdv =
∫

ms logm(0)dxdv = c5 + 2Nc0,
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we reformulate (5.31) (equivalently (5.26)) as

H [ms,m(0)] > 0 ∀G − {ms}
which is always satisfied.

Case t > 0. The result can be shown in the same way, using Lemma 3a(ii) (with strict
inequality) and the conservation laws. �

Remark 3 (a) Choice of f0. The assumption (5.28) is obviously satisfied by (ρ0, u0, T0) =
(ρs,0,1) (with ρs(x) = ∫

RN msdv) and the only Maxwellian in F with these moments is
ms . A more general choice for the initial datum f0 is given by an L1-function symmetric in
each of the space and velocity variables, with unit mass and potential energy equal to N/2.

(b) Radial solutions. Since radial solutions for (5.1) of type f (t, x, |v|) satisfy (5.29)
for every time, a natural guess could be to expect their convergence to ms for t → ∞.
As proved in Lemma 8, the velocity moments of such radial solutions are stationary, i.e.
(ρ0,0, T0) = (ρ(t),0, T (t)). Therefore f (t, x, |v|) can tend to ms only if the initial datum
f0 satisfies (ρ0,0, T0) = (ρs,0,1). Nothing is known about the existence of such solution.
However, if a time-dependent radial solution existed in the case of the BGK equation, then
we could prove convergence to equilibrium with exponential rate by means of the entropy.
In fact, the hypothesis on the moments would imply that the local Maxwellian M[f ](t)
coincides with ms , and then (using (3.5)–(3.6))

d

dt
H [f (t),ms] ≤ −H [f (t),M[f ](t)] = −H [f (t),ms]

and H [f (t),ms] ≤ H [f (0),ms] e−t .
(c) Anisotropic potential. The analysis for the anisotropic harmonic potential Φ(x) =

1
2

∑N

k=1 akxk
2 (with ak > 0 and at least two different coefficients ar �= as ) leads to another

family F (Φ) of time dependent steady states with

c(t, x) = c0, bj (t, x) = c3 cos(
√

aj t) + c4 sin(
√

aj t) +
N∑

h=1

wjhxh,

a(t, x) = c0

N∑
k=1

akxk
2 +

N∑
k=1

(√
akxk(c3 sin(

√
akt) − c4 cos(

√
akt))

) + c5

and wjh = 0 if ah �= aj . The hydrodynamical quantities are directly derived as in the
isotropic case, showing that the temperature is constant. The computations of this sec-
tion and of the Appendix can be performed even in this case, with small modifications.
Mass, energy and entropy are: M = (−π/c0)

N(
∏N

k=1
√

ak)
−1 exp(c5 − (Nc2

3)/(2c0) − (c2
4)/

(4c2
0)) = 1, Etot = N(c2

3 − 4c0 + 2c0c
2
4)/(8c2

0) = N,H [f̃ (0)] = 2c0N + c5 − N
2c0

(c2
3 + c2

4).

In particular, in the case of a totally anisotropic potential, the analogous of condition (5.28)
becomes:

∫
RN ρ0u0 · Idx = 0,

∫
RN ρ0(

∑
k

√
akxk)dx = 0. The anisotropic harmonic trap has

been investigated in [19] via an ansatz on the solution and numerical simulations.

6 BGK with Quadratic Potential

In this section we return to the study of the BGK equation in case of an harmonic potential
Φ(x) = |x|2/2. Our aim is to understand if the necessary conditions (5.11) (both for the L1
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and the Lyapunov convergence of f to m∞) can be sufficient. By Theorem 4 we know that
f converges to a Maxwellian m ∈ C([0,+∞);L1(R2N)), solution of the equation

∂tm + v · ∇xm − x · ∇vm = 0,

and with m ∈ G .
The question is now the identification of m.
By the moments estimates we surely know that, using the notations of Definition 1, for

tn → +∞ (up to subsequences)

Jx,f (t + tn) → Jx,m(t) and Jv,f (t + tn) → Jv,m(t) a.e. (6.1)

Then we note that the limit Maxwellian m of Theorem 4 has not necessarily the same energy
and the same angular momentum as the initial datum f0. This is due to a lack of control of
the tails of the sequence (|v|2 + 2Φ(x))f (t + tn) in unbounded domains. Even the higher-
order estimates in Theorem 2 cannot at present be useful since they are exponentially time-
dependent. However, the pointwise convergence and the local weak convergence hold true.
Furthermore the passage to the limit for the energy and the angular momentum is what one
expects from the conservation laws.

Therefore we introduce the following a-priori assumptions on f : for a.e. t ≥ 0, as tn →
+∞

Lf (t + tn) → Lm(t),

Epot,f (t + tn) → Epot,m(t),

Ekin,f (t + tn) → Ekin,m(t),

Kjh,f (t + tn) → Kjh,m.

(6.2)

Anyway we underline that the identification of m∞ and in general all results of Sect. 5 do
not use (6.2) as assumption. The fact that the optimal Maxwellian m∞ has the same energy
and angular momentum as f0 comes from the computations and it is not assumed.

Note that f is derived from an L1-existence theory and the Maxwellians in G are classical
solutions, therefore we implicitly assume the matching of these two theories. However, in
Sect. 5 the continuity property of the Maxwellians has never been used.

We recall that m∞ and ms have been defined in the Sects. 5.3 and 5.5.

Theorem 5 Assume Φ = |x|2/2. Under the setting of Theorem 4, we assume the conditions
(6.2) for the BGK-solution f . Then,

(a) If f0 satisfies the conditions of non oscillation (5.25), then for tn → +∞
fn(t) → ms, in L1(R2N)

where ms is the stationary Maxwellian equilibrium.
(b) (General case) If f0 does not fulfil the conditions (5.25) and if we consider the sequence

tn = 2πn, then for tn → +∞
fn(t) → m∞(t), in L1(R2N)

where m∞(t) is the time periodic Maxwellian equilibrium.
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Proof We recall that each m ∈ G depends on 6+N(N −1)/2 parameters (including the one
fixed by the convergence of the mass).

In case (a) the moments of f in Definition 1 are all constant in time. Due to (6.2) they are
supposed to pass to limit as tn → +∞. Hence, we have 6+N(N −1)/2 constants which fix
m = m∞ of Lemma 5 uniquely. And by Corollary 3 we know that this Maxwellian coincides
with ms .

In case (b) the moments of f are time dependent. Since for a general sequence tn the
limit m is defined up to a time shift, we cannot be sure “of the time of m”. Without the
time synchronization between f and m it would be very difficult to identify m. The choice
tn = 2πn is made to prevent this occurrence. For such tn, in (6.2) we get Lf (t + tn) = Lf (t),
Epot,f (t + tn) = Epot,f (t), and so on. The moments remain time dependent, but for each
time they result tn-independent. Then we consider t = 0 and we look for the limit f (tn) →
m(0). We get Lf (tn) = Lf (0) → Lm(0) = Lf (0), and the same holds for the other moments
in (6.2). Hence, f0 and m(0) fulfil (5.11) and m = m∞ is therefore uniquely defined (see
also (5.9)). �

Remark 4 (a) Note that (6.2) is satisfied if, for some ε > 1, one proves

∫ t2

t1

∫
R2N

f (t, x, v)(|v|2 + |x|2)εdtdxdv < g(t2 − t1),

with g(s) a continuous function in R. In this way, the bound depends on the time difference
(t2 − t1) and therefore is uniform on compact time intervals. This is the same idea applied in
Theorem 4 to get the unconditional convergence to m. Note that the (6.2) is anyway weaker
than this condition.

(b) Another open question concerns the entropy convergence. From (5.14) we know
that, as t → +∞, H [f (t),m∞(t)] → 0 ⇔ H [f (t)] → H [m∞(t)] (in particular it holds for
m∞(t) = ms ). For tn = 2πn we can also rewrite the expression as: H [f (t + tn),m∞(t)] →
0 ⇔ H [f (t + tn)] → H [m∞(t)] for tn → +∞, in order to employ the result of Theorem 4.
Anyway, the open question consists only in proving the passage to the limit, since the iden-
tification of the Maxwellian equilibrium has already been solved in Theorem 5.
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Appendix

7.1 Computations for the Harmonic Potential

We collect here the computations used in Proposition 2 and partially in Corollary 2.
For convenience of the reader, we recall the following integration formulas. Let x, ξ, η ∈

R
N,α ∈ (0,+∞), then

∫
RN

exp(−α|x|2 + ξ · x)|x|2dx = 1

2α

(
N + |ξ |2

2α

)(π

α

)N/2
exp

( |ξ |2
4α

)
,
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∫
RN

exp(−α|x|2 + ξ · x)(η · x)dx = (η · ξ)
1

2α

(π

α

)N/2
exp

( |ξ |2
4α

)
,

∫
RN

exp(−α|x|2 + ξ · x)dx =
(π

α

)N/2
exp

( |ξ |2
4α

)
.

Next we consider the family F , introduced in (5.21) satisfying the same normalizations
(5.27) as f0. Even if Kji = 0 does not necessary imply w = {wij } = 0 in all F , for the proof
of Proposition 2 it is sufficient to consider only the subfamily with w = 0. In addition to the
conservation laws, the elements of this subfamily fulfil some obvious requirements:

(i) T̃ (t) > 0 implies c(t) < 0,∀t > 0 and for t = 0 gives c0 ± c1 < 0 ⇒ c0 < 0;
(ii) ρ̃(t, x) ∈ L1(RN) implies c2

0 > c2
2 + c2

1 → |c1| < (c2
0 − c2

2)
1/2;

(iii) H [ms, m̃(0)] ≥ 0 implies c5 + 2Nc0 ≤ −N − N log(2π);
(iv) H [m̃(0)] ≥ H [ms] is equivalent to c2

0 − c2
2 − c2

1 ≥ 1
4 , which gives c0 ≤ − 1

2 .

This last constraint is essential in the proof of Proposition 2 since it means c0 = −1/2 ⇔
m̃ = ms for the considered subfamilies. We now compute mass, entropy and energy assum-
ing the normalizations (5.27) for m̃.

Mass in F with w = 0:

∫
RN

ρ̃(0, x)dx = (2πT̃ (0))N/2
(π

α

)N/2
exp

(
γ + Nβ2

4α

)
= 1, (7.1)

where −α = −c2
2+c2

0−c2
1

c0+c1
, β = −c4 + c2c3

c0+c1
, γ = c5 − Nc2

3
4(c0+c1)

, T̃ (0) = − 1
2(c0+c1)

. The rela-

tion (7.1) can be used to express the coefficient c5 in γ or c4 in β with respect to the other
ones.

Energy in F with w = 0:

1

2

∫
ρ̃(0, x)

(|x|2 + |ũ(0, x)|2 + NT̃ (0)
)
dx

= N

2

[
δ

2α

(
1 + β2

2α

)
− ηβ

2α
+ μ + T̃ (0)

]
= N,

where δ = 1 + c2
2

(c0+c1)2 , η = c2c3
(c0+c1)2 ,μ = c2

3
4(c0+c1)2 .

Entropy in F with w = 0:

H [m̃(0)] = −N − N

2
log

(
2π2T̃ (0)

α

)
. (7.2)

Subfamilies of F Thanks to the previous relations for the mass and the energy, we find the
expression for the 1-parameter subfamilies used in Sects. 5.2 and 5.4.

F1 = {m̃ ∈ F |c2 = c3 = c4 = 0,w = 0} with c2
1 = c0

(
1

2
+ c0

)
,

(α,β, δ, η,μ,γ ) =
(

c1 − c0,0,1,0,0,
N

2
log

(−c0

2π2

))
;

Fa = {m̃ ∈ F |c1 = c2 = c3 = 0,w = 0} with c4
2 = 4c0 (1 + 2c0) ,



The BGK Model with External Confining Potential 325

(α,β, δ, η,μ,γ ) =
(

−c0,−c4,1,0,0,N

(
log

(−c0

π

)
+ c4

2

4c0

))
;

Fb = {m̃ ∈ F |c1 = c2 = c4 = 0,w = 0} with c2
3 = 4c0 (1 + 2c0) ,

(α,β, δ, η,μ,γ ) =
(

−c0,0,1,0,
c2

3

4c2
0

,−N log

(
π

−c0

))
;

Fc = {m̃ ∈ F |c1 = c3 = c4 = 0,w = 0} with c2
2 = c0

(
1

2
+ c0

)
,

(α,β, δ, η,μ,γ ) =
(−c2

0 + c2
2

c0
,0,1 + c2

2

c2
0

,0,0,−N

2
log

(
π2

c2
0 − c2

2

))
.

Radial solutions in velocity We conclude with the analysis of radial solutions, showing
that they can converge to ms together with their moments only if their initial hydrodynamical
quantities coincide with those of ms . In this case an exponential rate of convergence can be
found for the BGK model (see Remark 3).

Lemma 8 Let h0 = h0(x, |v|) ≥ 0, h0 �= ms , an initial condition such that
∫

R2N h0(X(−t),

V (−t))dv ≥ g(x) with g > 0, g ∈ L1((1 + Φ(x))dx).
If (5.1) with Φ(x) = |x|2/2 admits a radial solution in the v variable, namely

f (t, x, v) = h(t, x, |v|) ∈ C([0,+∞),L1(R2N)), then its hydrodynamical quantities are
constant in time (ρ(t), u(t), T (t)) = (ρ0,0, T0).

Proof From hypothesis and the definition of the 1st moment u(t, x), we obtain ρ(t, x) ·
uk(t, x) = ∫

h(t, x, |v|)vkdv = 0, a.e.x, ∀t , 1 ≤ k ≤ N . Thus, for each t1 fixed, either
ρ(t1, x) = 0 or uk(t1, x) = 0 can happen.

The hypothesis on h0 and the mild formulation (2.4) implies ρ(t, x) > 0 a.e. in x, for all
times. With u = 0 the hydrodynamical system becomes

∂tρ + ∇x · (ρu) = 0 ⇒ ∂tρ = 0

d

dt
(ρ(x)T (t, x)N) =

∫
|v|2(C(h) − v · ∇xh + ∇xΦ · ∇vh)dv = 0.

This means that h has moments (ρ,u,T ) = (ρ0,0, T0) independent of time. �

7.2 Approximate Solutions and Proof of Theorem 1

We construct the approximated solutions for the BGK Boltzmann equation (1.1)–(1.7) in
analogy to [25]. One proceeds in two steps: first, one proves existence and uniform esti-
mates for the model (BGKα

ε ), then one passes to the limit α → 0 and obtains a solution for
the approximated model (BGKε). This model differs from (1.1) since a Dirac mass in v is
avoided in the nonlinearity because γε ≥ ε. In the proof of Theorem 1 there is the last step
of the procedure: the passage to the limit ε → 0 in the equation (BGKε), which gives the
solution of the original problem (1.1)–(1.7).
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Lemma 9 For ε,α ∈ (0,1] consider the model

(BGKα
ε )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf + v · ∇xf − ∇xΦ · ∇vf = hαM
α
ε [f ] − f,

Mα
ε [f ](t, x, v) = ρ(t, x)

(2πγα(t, x))N/2
exp

(
−|v − wα(t, x)|2

2γα(t, x)

)
,

hα(x) = exp(−αΦ(x)),

wα(t, x) = u inf(|u|,1/α)/|u|, γα(t, x) = inf(sup(ε, T ),1/α),⎛
⎝ ρ

ρu

ρ|u|2 + ρT

⎞
⎠ (t, x) = ∫

RN

⎛
⎝ 1

v

|v|2

⎞
⎠f (t, x, v)dv

with initial condition (1.6)–(1.7) and Φ satisfying (1.3)–(1.5). Then, there exists a unique
nonnegative mild solution f , with (1 + 2Φ(x) + |v|2)f ∈ C([0,+∞);L1(R2N)), such that,
for all t ≤ t0,

∫
R2N

(
1 + Φ(x) + |v|2 + | logf |)f (t, x, v)dxdv ≤ c(ε, t0),

∫
R2N

(
1 + Φ(x) + |v|2 + | log(hαM

α
ε [f ])|)hα(x)Mα

ε [f ](t, x, v)dxdv ≤ c(ε, t0),

∫
R2N

(
1 + Φ(x) + |v|2 + | log(Mα

ε [f ])|)Mα
ε [f ](t, x, v)dxdv ≤ c(ε, t0).

Lemma 10 For ε ∈ (0,1] consider the model

(BGKε)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf + v · ∇xf − ∇xΦ · ∇vf = Mε[f ] − f

Mε[f ](t, x, v) = ρ(t, x)

(2πγε(t, x))N/2
exp

(
−|v − u(t, x)|2

2γε(t, x)

)
,

γε(t, x) = sup(ε, T ),⎛
⎝ ρ

ρu

ρ|u|2 + ρT

⎞
⎠ (t, x) = ∫

RN

⎛
⎝ 1

v

|v|2

⎞
⎠f (t, x, v)dv

with initial condition (1.6)–(1.7) and Φ satisfying (1.3)–(1.5).
Then, there exists a nonnegative mild solution f , with (1+2Φ(x)+|v|2)f ∈ C([0,+∞);

L1(R2N)), such that, for all t ≤ t0,

∫
R2N

(1 + Φ(x) + |v|2 + | logf |)f (t, x, v)dxdv ≤ c(t0), (7.3)

∫
R2N

(1 + Φ(x) + |v|2 + | log(Mε[f ])|)Mε[f ](t, x, v)dxdv ≤ c(t0). (7.4)

For the proof of Lemma 10 see Theorem 4 of [25].

Proof of Lemma 9 The proof is a consequence of a fixed point argument in the space Yt0 =
C([0, t0];Z), with Z = L1((1 + |v|2 + 2Φ(x))dxdv). In [25] it has been proved that map
z �→ Mα

ε [z] is Lipschitz continuous on L1((1 + |v|2)dv). Next, we show that the map z �→
hαM

α
ε [z] is uniformly Lipschitz continuous on Z. From the pointwise inequality hα(x)(1 +
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|v|2 +2Φ(x)) ≤ c2(α)(1+|v|2), with c2(α) > 0 a constant dependent of α, we can conclude,
∀f1, f2 ∈ Z,

∫
R2N

|Mα
ε [f1] − Mα

ε [f2]|hα(x)(1 + |v|2 + 2Φ(x))dxdv

≤ c2(α)

∫
RN

‖(Mα
ε [f1] − Mα

ε [f2])(1 + |v|2)‖L1(RN
v )dx ≤ c(α, ε)‖f1 − f2‖Z.

Thus (BGKα
ε ) has a mild solution, which preserves the positivity. Using the relations |wα|2 −

|u|2 ≤ 0, γα − T ≤ ε and the Gronwall’s lemma we get an estimate of the Z-norm of f

‖f (t, ·)‖Z ≤ ‖f0‖Z + tNε‖f0‖L1 ≤ c(t0) (7.5)

independent of α and ε and which let us extend to [0,+∞) the temporal domain of defini-
tion. Concerning the estimate of the entropy, as in [25] one easily gets

∫
R2N f | logf |dxdv ≤

c(ε,α, t0). Because of hα on the r.h.s. of the equation, we must carefully check that the bound
of

∫
R2N f logf dvdx is uniform in α. To do it we need the following inequality

∫
RN

log(ε)ρdx ≤
∫

RN

log(γα)ρdx ≤
∫

RN

γαρdx ≤ c(ε, t0), (7.6)

which follows from: ε = inf(1/α, ε) ≤ inf(1/α, sup(ε, T )) = γα ≤ sup(ε, T ),

∫
RN

ρ(γα − T )dx ≤ ε

∫
ρdx ≤ c(ε, t0),

∫
RN

ργαdx ≤
∫

RN

ρT dx + c(ε, t0) ≤
∫

R2N

|v|2f dvdx + c(ε, t0) ≤ c(ε, t0).

Now remember (x − y) logy ≤ (x − y) logx and (7.6), and consider:

∂t

∫
R2N

f logf dvdx

=
∫

R2N

(1 + logf )(Mα
ε [f ]hα − f )dvdx

≤
∫

R2N

log(Mα
ε [f ]hα)(M

α
ε [f ]hα − f )dvdx =

∫
R2N

αΦ(x)(1 − hα)ρdx

+
∫

R2N

(
logρ − log(2πγα)

N/2 − |v − wα|2
2γα

)
(Mα

ε [f ]hα − f )dvdx

≤
∫

ρ≤1
ρ logρ(hα − 1)dx + N

2

∫
RN

log(2πγα)ρdx − N

2

∫
RN

log(ε)ρhαdx

+
∫

R2N

|v|2 + |u|2
ε

f dvdx + c(ε, t0)

≤
∫

e−Φ(x)≤ρ≤1
Φ(x)(1 − hα)ρdx +

∫
0≤ρ≤e−Φ(x)

ρ log
1

ρ
(1 − hα)dx + c(ε, t0)

which is less than c(ε, t0). This concludes the estimate of the entropy of f . Similarly, one
gets

∫
R2N |J [Mα

ε [f ]hα]|dvdx ≤ c(ε, t0), for J [f ] = f logf . �
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Proof of Theorem 1

Passing to the limit ε → 0. It is straightforward in analogy to Theorem 1 of [25] (see
also [12]) and we skip the details. Calling {fε}ε∈(0,1] the sequence of solutions of the (BGKε)

equation and {Mε[fε]}ε∈(0,1] the corresponding modified local Maxwellians, one proves that
for ε → 0, due to (7.3), (7.4) and Step 1, it results

fε ⇀ f in weak − L1([0, t0] × R
2N),∫

RN

(1, v)fεdv →
∫

RN

(1, v)f dv in L1([0, t0] × R
N),

∫
RN

|v|2fεdv →
∫

RN

|v|2f dv in L1([0, t0] × Kx),

(ρε, ρεuε) → (ρ, ρu) in L1([0, t0] × R
N),

ρε(|uε |2 + NTε) → ρ(|u|2 + NT ) in L1([0, t0] × Kx),

Mε[fε] → M[f ] in L1([0, t0] × R
2N),

(7.7)

up to subsequences, where (uε, Tε) and (u,T ) = (
∫

vf

ρ
,

∫ |v−u|2f

Nρ
) are defined only where

ρε �= 0 and resp. ρ �= 0. For ρ = 0 it results M[f ] = 0. Then, f is distributional and mild
solution of (1.1).

Properties of the solutions. We write (1.1) in distributional form

−
∫ ∞

0

∫
R2N

(∂t + v · ∇x − ∇xΦ(x) · ∇v)η(t, x, v)f (t, x, v)dtdxdv

−
∫

R2N

η(0, x, v)f0(x, v)dxdv =
∫ ∞

0

∫
R2N

η(t, x, v)(M[f ] − f )(t, x, v)dtdxdv (7.8)

with η(t, x, v) ∈ C∞
0 ([0,∞) × R

N
x × R

N
v ). Here and in the following we denote by βR the

cut-off function βR(z) = χ(|z|/R), with χ ∈ C∞
0 (R), χ ≡ 1 for |z| ≤ 1 and χ ≡ 0 for |z| ≥

2, 0 ≤ χ ≤ 1.
Bounds and temporal regularity: The bounds (2.1) come from the weak convergence.

If
∫

R2N |x|2f0dxdv ≤ c0, then one easily gets
∫

R2N |x|2f (t)dxdv ≤ c(t0) for t ∈ [0, t0].
Concerning the temporal regularity, one can prove that (1 + |v|2 + 2Φ(x))f (t, x, v) ∈
C([0,∞);L1(R2N)) by adapting Theorem 3.5.1 of [26].

Hydrodynamical system (2.2): The first and second equation in (2.2) are straightfor-
ward, while the third equation needs a bit of care. Here we choose η(t, x, v) = (|v|2 +
2Φ(x))α(t, x)βR(v) as test function in (7.8), with α ∈ C∞

0 ([0,∞)×R
N) and let R → +∞.

With (2.1) we control each term of (7.8) except for
∫ |v|2v ·∇xα(t, x)βR(v)f dxdvdt , which

requires a bound of the third velocity moment
∫

[0,t0]×Kx×R
N
v

|v|3f dxdvdt < c(t0,Kx) on
compact x-domains Kx . According to Lemma 1, the latter estimate holds for potentials with
σ = 1 in (1.4). For other potentials the estimate holds under further hypotheses on f0 (see
Theorem 2).

Global conservation of mass and total energy: In case of the energy, we consider in
(7.8) the test function η(t, x, v) = α(t)(|v|2 +2Φ(x))βR(|v|2 +2Φ(x)) ∈ C2

c ([0,∞)×R
2N)
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supported on energy levels

βR(|v|2 + 2Φ(x)) = 1 for |v|2 + 2Φ(x) ≤ R,

βR(|v|2 + 2Φ(x)) = 0 for |v|2 + 2Φ(x) ≥ 2R.
(7.9)

Indeed the assumption (1.5) assures that ΓR (for R ≥ R∗) is an energy level submanifold
with C2(R2N−1) regularity, which is bounded in the phase-space since Φ(x) → +∞ as
|x| → +∞. With such a choice we have (v · ∇x − ∇xΦ · ∇v)

(
(|v|2 + 2Φ(x))βR(|v|2 +

2Φ(x))
) = 0. For R → +∞, βR(|v|2 + 2Φ(x)) tends to 1 and the r.h.s. in (7.8) vanishes

since M[f ] and f have the same velocity moments.
Global conservation of angular momentum for radial potential: Consider in (7.8) the test

function η(t, x, v) = (xjvk − xkvj )α(t)βR(v)βR(x). Since Φ is radial, the two terms

|v · ∇xηf | ≤ |x||v|2 c

R
1{R≤|x|≤2R}α(t)βR(v)f ≤ c|v|2f,

|∇xΦ · ∇vηf | ≤ c|x||v||∇xΦ| c

R
1{R≤|v|≤2R}α(t)f ≤ c(1 + Φ(x))f

have an L1-dominating function independent of R, where we used |z|
R

1{R≤|z|≤2R} ≤ 2 and the
first assumption in (1.4). Thus

∫
[0,+∞)×R2N (v · ∇xηf − ∇xΦ · ∇vη)f (t, x, v)dxdvdt → 0

for R → +∞. The right hand side of (7.8) vanishes because M[f ] and f have the same
velocity moments, and it is finite in case the potential has at least quadratic growth at infinity.
Otherwise, we have to assume

∫
R2N |x|2f0dxdv ≤ c0. �
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